РАССМОТРЕНО На заседании ШМС Протокол № 1 от «29» 08. 2022 г.

СОГЛАСОВАНО

Заместитель директора по УВР

Лег Н.Е.Михайлова

УТВЕРЖДАЮ Директор МБОУ «СОШ №6» И.А. Никифорова Приказ № 116 от «31 » 08. 2022 г.

Рабочая программа по предмету «Физика» для 10-11 классов на 2022-2023/ 2023-2024 учебные годы

Лениногорск, 2022

Пояснительная записка.

- Рабочая программа по физике (углубленный уровень) составлена на основе: Основной образовательной программы ООО МБОУ СОШ №6 г. Лениногорска МО «ЛМР» РТ
- Учебного плана МБОУ СОШ №6 г. Лениногорска МО «ЛМР» РТ
- Примерной программы по физике 10-11 классы (стандарты второго поколения)
- Федерального перечня учебников, утвержденного Минобрнауки (приказ№254 от 20.05.2020)
- -Годового календарного учебного плана.

Планируемые личностные результаты освоения ООП

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского самосовершенствовании, общества, потребность физическом В занятиях спортивно-оздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков. Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):
- российской российская идентичность, способность К осознанию идентичности в поликультурном социуме, чувство причастности к историкокультурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;

– воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
- признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному дост
 - оинству людей, их чувствам, религиозным убеждениям;
- обучающихся противостоять готовность идеологии экстремизма, ксенофобии; коррупции; дискриминации национализма, социальным, ПО религиозным, расовым, национальным признакам И другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и

инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;

- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

- уважение ко всем формам собственности, готовность к защите своей собственности,
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;

- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

– физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Планируемые метапредметные результаты освоения ООП

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия

Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в

отношении собственного суждения, рассматривать их как ресурс собственного развития;

- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Выпускник на углубленном уровне научится:

- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;

- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебноисследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

Углубленный уровень

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии.

Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкостии и газа.

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. *Вынужденные колебания, резонанс*.

Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа.

Модель идеального газа в термодинамике: уравнение Менделеева–Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. *Поверхностное натижение*. Модель строения твердых тел. *Механические свойства твердых тел.*

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - сравнение масс (по взаимодействию);
 - измерение сил в механике;
 - измерение температуры жидкостными и цифровыми термометрами;
 - оценка сил взаимодействия молекул (методом отрыва капель);
 - измерение термодинамических параметров газа;
 - измерение ЭДС источника тока;

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);
 - измерение внутреннего сопротивления источника тока;

Наблюдение явлений:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;
 - наблюдение вынужденных колебаний и резонанса;
 - наблюдение диффузии;

Исследования:

 исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;

- исследование движения тела, брошенного горизонтально;
- исследование центрального удара;
- исследование качения цилиндра по наклонной плоскости;
- исследование движения броуновской частицы (по трекам Перрена);
- исследование изопроцессов;
- исследование изохорного процесса и оценка абсолютного нуля;
- исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
 - исследование зависимости силы тока через лампочку от напряжения на ней;
 - исследование нагревания воды нагревателем небольшой мощности;

Проверка гипотез (в том числе имеются неверные):

- при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
 - при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);
 - скорость остывания воды линейно зависит от времени остывания;
- напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;

Тематическое планирование:

тематическое планирование.					
Основное содержание	Количество часов, отведенных на изучение				
	10	11	Всего	По	Изменения
	класс	класс	ПО	факту	
			плану		
Физика как наука	4	2	6	6	
методы научного					
познания природы					
Механика	62	4	60	66	Из резерва 4ч.
Молекулярная физика	37		34	37	Из резерва 3ч
Электростатика.	40		38	40	Из резерва 2ч
Постоянный ток					
Магнитное поле		20	20	20	
Электромагнитные		55	55	55	
колебания и волны					
Квантовые явления		34	34	34	
Строение Вселенной		8	8	8	
Физпрактикум	20	20	40	40	
Обобщающее	12	10	20	22	Из резерва 2ч
повторение					
Резерв свободного		17	30	17	
учебного времени					
Всего	175	170	345	345	

Критерии оценивания работ по физике.

Критерии и нормы оценки знаний обучающихся Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всего курса астрономии в целом.

Для устных ответов определяются следующие критерии оценок:

Оценка «5» ставится в том случае, если учащийся

- показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий.
- дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение астрономических величин, из единиц и способов измерения.
- правильно выполняет чертежи, схемы и графики, сопровождает рассказ новыми примерами.
- строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применить знания в новой ситуации при выполнении практических заданий.
- может установить связь между изучаемым и ранее изученным материалом по курсу астрономии, а также с материалом, усвоенным при изучении других предметов

Оценка «4» ставится, если ответ ученика удовлетворяет основным требованиям к ответу на оценку «5», но дан без использования собственного плана, новых примеров.

- Без применения новых знаний в новой ситуации.
- Без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов.
- Если учащийся допустил одну ошибку или не более двух недочетов и может их исправить самостоятельно или с небольшой помощью учителя

Оценка «3» ставится, если учащийся

- Правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса астрономии, но препятствующие дальнейшему усвоению программного материала.
- Умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул.
- Допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых ошибок, одной негрубой ошибки и трех недочетов.
- Допустил четыре или пять недочетов.

Оценка письменных контрольных работ

Оценка «5» Ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка «4» Ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки иодного недочета, не более трех недочетов.

Оценка «3» Ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка практических работ

Оценка «5» ставится, если учащийся

Выполняет работу в полном объеме с соблюдением необходимой последовательности проведения измерений.

Все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов.

Соблюдает требования правил техники безопасности

Правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления. Правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5», но было допущено 2-3 недочета, не более одной негрубой ошибки и одного недочета.

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильный результат и вывод; если в ходе измерения были допущены ошибки.

Негрубые ошибки: 1.Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведения опыта или измерений. 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем. 3.Пропуск или неточное написание наименований единиц астрономических величин. Недочеты: 1. Арифметические ошибки в вычислениях, если это ошибки грубо не искажают реальность полученного результата. 2.Отдельные погрешности в формулировке вопроса или

ответа. 3.Небрежное выполнение записей, чертежей, схем, графиков. 4.Орфографические и пунктуационные ошибки. При тестировании все учащиеся находятся в одинаковых условиях и используют измерительные материалы(тесты).

Оценка результатов ведется по 5-балльной шкале.

- На «5» необходимо выполнить 95% заданий.
- Если выполнено 75 % заданий, работа оценивается оценкой «4».
- Если выполнено 50 % заданий, выставляется «3»;
- Если не выполнено 25% заданий, выставляется «2».

Контрольно-измерительные материалы:

Тема: «Кинематика»

- I 1. Сколько времени пассажир, сидящий у окна поезда, идущего со скоростью 54 км/ч, будет видеть проходящий мимо него встречный поезд, скорость которого 36 км/ч? Длина поезда 250 м.
 - 2. Автомобиль движется со скорость 72 км/ч. Определите ускорение автомобиля, если через 20 с он остановится.
 - 3. За какое время автомобиль, двигаясь из состояния покоя с ускорением $0.6~{\rm m/c^2},$ пройдет $30~{\rm m?}$
- 4. Теплоход проходит расстояние между двумя городами вверх по течению реки за 80 ч, а вниз по течению за 60 ч. Определите время, за которое расстояние между городами проплывет плот.
 - 5. При взлете самолет за 40 с приобретает скорость 300 км/ч. Какова длина взлетной полосы?
 - 6. Определите начальную скорость тела, которое, двигаясь с ускорением $2\ {\rm m/c^2}$, за $5\ {\rm c}$ проходит путь, равный $125\ {\rm m}$.
- III 7. Эскалатор метро поднимает неподвижно стоящего на нем пассажира за 1 мин. По неподвижному эскалатору пассажир поднимается за 3 мин. Сколько времени будет подниматься идущий пассажир по движущемуся эскалатору?
 - 8. Мяч, скатываясь с наклонной плоскости из состояния покоя, за первую секунду прошел путь 15 см. Определите путь, пройденный мячом за 2 с.
 - 9. Тело движется равномерно со скоростью 3 м/с в течение 20 с, затем в течение 15 с движется с ускорением $0.2 \, \text{m/c}^2$ и останавливается. Найдите путь, пройденный телом за все время движения.

Тема: «Динамика»

- I 1. Определите, с каким наибольшим ускорением можно поднимать груз массой 120 кг, чтобы канат, выдерживающий максимальную нагрузку 2000 H, не разорвался
 - 2. Чему равна сила трения, если после толчка вагон массой $20\,\mathrm{T}$ остановился через $50\,\mathrm{c}$, пройдя расстояние $125\,\mathrm{m}$?
- II 3. К одному концу веревки, перекинутой через блок, подвешен груз массой 10 кг. С какой силой надо тянуть за другой конец веревки, чтобы груз поднимался с ускорением 2 м/с².
 - 4. Определите минимальную скорость, при которой автомобиль успеет остановиться перед препятствием, если он начинает тормозить на расстоянии 25 м от препятствия, а коэффициент трения шин об асфальт равен 0,8.
- III 5. На концах невесомой и нерастяжимой нити, перекинутой через блок, подвешены грузы, массы которых равны 600 г и 400 г. Определите скорость грузов через 2 с после того, как система будет предоставлена самой себе.
 - 6. При помощи пружинного динамометра груз массой $10~\rm kr$ движется с ускорением $5~\rm m/c^2$ по горизонтальной поверхности стола. Коэффициент трения груза о стол равен 0,1. Найдите удлинение пружины, если ее жесткость $2000~\rm H/m$.

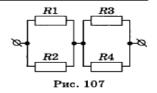
Тема: «Законы сохранения».

- I 1. Два кубика массами 1 кг и 3 кг скользят навстречу друг другу со скоростями 3 м/с и 2 м/с соответственно. Каков суммарный импульс кубиков после их абсолютно неупругого удара?
 - 2. Рассчитайте скорость, которую будет иметь ракета, стартовая масса которой 1 т, если в результате горения топлива выброшено $200\,\mathrm{kr}$ газов со скоростью $2\,\mathrm{km/c}$.
- II 3. Две тележки движутся навстречу друг другу со скоростью 4 м/с каждая. После столкновения вторая тележка получила скорость в направлении движения первой тележки, равную 6 м/с, а первая остановилась. Рассчитайте массу первой тележки, если масса второй 2 кг
 - 4. Граната, летевшая горизонтально со скоростью 10 м/с, разорвалась на два осколка массами 1 кг и 1,5 кг. Больший осколок после взрыва летит в том же направлении и его скорость 25 м/с. Определите направление движения и скорость меньшего осколка.
- III 5. Человек, находящийся в неподвижно стоящей на озере лодке, переходит с носа на корму. Рассчитайте расстояние, на которое переместится лодка, если масса человека 60 кг, масса лодки 120 кг, а длина лодки 3 м.
 - 6. При взрыве камень разрывается на три части. Первый осколок массой 1 кг летит горизонтально со скоростью 12 м/с, а второй осколок массой 2 кг со скоростью 8 м/с перпендикулярно направлению движения первого куска. Третий осколок отлетает со скоростью 40 м/с. Какова масса третьего осколка и в каком направлении по отношению к горизонту он летит?

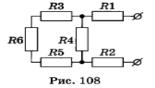
Тема: «Молекулярно-кинетическая теория»

- Какова масса кислорода, содержащегося в баллоне объемом 50 л при температуре 27 °С и давлении 2 ⋅ 106 Па?
 - 2. Рассчитайте температуру, при которой средняя кинетическая энергия поступательного движения молекул равна $10.35 \cdot 10^{-21}$ Дж.
- II 3. Определите плотность азота при температуре 27 °C и давлении 100 кПа.
 - 4. При давлении $250 \ \mathrm{k\Pi a}$ газ массой $8 \ \mathrm{kr}$ занимает объем $15 \ \mathrm{m}^3$. Чему равна средняя квадратичная скорость движения молекул газа?
- III 5. Какова плотность смеси, состоящей из 32 г кислорода и 22 г углекислого газа при температуре 0 °C и давлении 100 кПа?
 - 6. Открытую стеклянную колбу вместимостью $250~{\rm cm}^3$ нагрели до $127~{\rm ^{\circ}C}$, после чего ее горлышко опустили в воду. Сколько граммов воды войдет в колбу, если она охладится до $7~{\rm ^{\circ}C}$? Давление в колбе считать постоянным.

Teма: «Термодинамика»

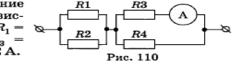

- I 1. Чему равна внутренняя энергия 5 моль одноатомного газа при температуре 27 °C?
 - 2. При адиабатном расширении газ совершил работу 2 МДж. Чему равно изменение внутренней энергии газа? Увеличилась она или уменьшилась?
- II 3. Для изобарного нагревания 800 моль газа на 500 К газу сообщили количество теплоты 9,4 МДж. Определите работу газа и изменение его внутренней энергии.
 - 4. Газ в идеальном тепловом двигателе отдает холодильнику 60% теплоты, полученной от нагревателя. Какова температура нагревателя, если температура холодильника $200~\mathrm{K?}$
- III 5. Какое количество теплоты необходимо сообщить одному молю идеального одноатомного газа, находящемуся в закрытом баллоне при температуре 27 °C, чтобы повысить его давление в 3 раза?
 - 6. Температуры нагревателя и холодильника идеальной тепловой машины соответственно равны $117\,^{\circ}\mathrm{C}$ и $27\,^{\circ}\mathrm{C}$. Количество теплоты, получаемое от нагревателя за $1\,\mathrm{c}$, равно $60\,\mathrm{кДж}$. Вычислите КПД машины, количество теплоты, отдаваемое холодильнику в $1\,\mathrm{c}$, и мощность машины.

Тема: «Постоянный электрический ток»


- I Два одинаковых металлических шарика, имеющих заряды 9 · 10⁻⁸ Кл и 3 · 10⁻⁸ Кл, приведены в соприкосновение и разведены на прежнее расстояние. Определите отношение сил взаимодействия шариков до и после соприкосновения.
 - 2. Два заряда, один из которых по модулю в 4 раза больше другого, расположены на расстоянии 10 см друг от друга. В какой точке поля напряженность равна нулю, если заряды разноименные?
- П 3. Металлический шарик, подвешенный на пружине, поместили в однородное вертикальное электрическое поле напряженностью 400 Н/Кл. При этом растяжение пружины увеличилось на 10 см. Найдите заряд шарика, если жесткость пружины равна 200 Н/м.
 - 4. Между точечными зарядами $6.4 \cdot 10^{-6}$ Кл и -6.4×10^{-6} Кл расстояние равно 12 см. Найдите напряженность в точке, удаленной на 8 см от обоих зарядов.
- II 5. Одинаковые металлические шарики, заряженные одноименно зарядами q и 4q, находятся на расстоянии r друг от друга. Шарики привели в соприкосновение. На какое расстояние их надо развести, чтобы сила взаимодействия осталась прежней?
 - 6. Четыре одинаковых точечных заряда по $4 \cdot 10^{-6} \; \mathrm{K\pi}$ помещены в вершины квадрата. Какой заряд нужно поместить в центр квадрата, чтобы система находилась в равновесии?

Тема: «Электростатика»

- I 1. Чему равно общее сопротивление электрической цепи (рис. 107), если $R_1=R_2=15$ Ом, $R_3=R_4=25$ Ом?
 - 2. Какое напряжение нужно создать на концах проводника сопротивлением 20 Ом, чтобы в нем возникла сила тока 0,5 А?


- 3. Какова площадь поперечного сечения константановой проволоки сопротивлением 3 Ом, если ее длина 1,5 м?
- II 4. Найдите общее сопротивление электрической цепи (рис. 108), если $R_1=4$ Ом, $R_2=5$ Ом, $R_3=4$ Ом, $R_4=20$ Ом, $R_5=12$ Ом, $R_6=4$ Ом.
 - 5. Определите сопротивление алюминиевой проволоки длиной 150 см, если площадь ее поперечного сечения 0,1 мм². Каково напряжение на концах этой проволоки, если сила тока в ней 0,5 A?

R 2R 2R 2R 2S 2R V

Рис. 109

- 6. Рассчитайте сопротивление лампы и напряжение на каждом проводнике (рис. 109), если показания приборов 0,5 A и 30 B, а $R_1=25$ Ом, $R_2=15$ Ом.
- 7. Рассчитайте напряжение и силу тока в каждом резисторе (рис. 110), если $R_1 = 4$ Ом, $R_2 = 4$ Ом, $R_3 = 15$ Ом, $R_4 = 15$ Ом, $I_3 = 2$ А.

8. Масса медного контактного провода на пригородных электрифицированных железных дорогах составляет 890 кг. Определите сопротивление этого провода, если его длина 2 км. Плотность меди равна 8900 кг/м³.